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Given a sequence of real or complex coefficients C j and a sequence of distinct
nodes t j in a compact interval T, we prove the divergence and the unbounded
divergence on superdense sets in the space C(T) of the simple quadrature formulas

Lx(t) duet) = Qn(X) + Rn(x)

and

Lw(t) x(t) dt = Qn(x) + Rn(x),

where

xEC(T).
i=l

The divergence (not certainly unbounded) for at most one continuous function of
the first simple quadrature formula, with mn= nand u(t) = t, was established by
P. J. Davis in 1953. © 1991 Academic Press, Inc.

1. CONDENSATION OF SINGULARITIES AND UNBOUNDED DIVERGENCE OF

QUADRATURE FORMULAS

Let X be a normed space over K, where K is the field R of real numbers
or the field C of complex numbers. Denote by X* the dual of X, i.e., the
Banach space of aU linear and continuous functionals x*: X -+ K, endowed
with the norm Ilx*11 =sup{lx*(x)l:xEX, Ilxll:::;; I}, X*EX*. A subset Yof
a topological space Z is said to be superdense in Z if Y is an uncountably
infinite dense Grset in Z [1, p. 139]. The following principle of condensa­
tion of singularities is well-known:

303
0021-9045/91 $3.00

Copyright © 1991 by Academic Press, Inc.
All rights of reproduction in any form reserved.



304 lOAN MUNTEAN

1.1. THEOREM [1, Theorem 3.1 or 5.4]. If X is a Banach space and
(X:)neN is a sequence of elements in X* such that sup{llx,;ll:nEN} = 00,

then the set {XEX: sup{lx,;(x)l: nEN} = oo} is superdense in X.

Consider a strictly increasing sequence (mn)neN of positive integers, a
matrix of coefficients c~, ..., c':n in K, a matrix of distinct nodes t~, ..., t,:n in
a compact interval T = [a, b], with a < b, and a function of bounded
variation u: T --+ K. Denote by C( T) the Banach space of all continuous
functions x: T --+ K endowed with the norm Ilxll = sup{ Ix(t)l: t E T}. We
say that the quadrature formula

associated with the above data, where

m n

Qn(x) = L c~x(t~),
i~l

XE C(T), (1)

(2)

is convergent on a subset Y of C( T) if for each y E Y one has Rn(y) --+ 0
whenever n --+ 00. The formula (1) is said to be unboundedly divergent on a
subset Y of C(T) if sup{ IQn(y)l: n EN} = 00 for each y E Y. In what follows
we need the next classical characterization of convergent quadrature
formulas:

1.2. THEOREM [7, p.267]. The quadrature formula (1) converges on
C( T) if and only if

(i) the sequence (L7'': 1 \c~1 )neN is bounded;

(ii) the formula (1) converges on the set P of the restrictions to T of
all polynomial functions.

Defining the linear and continuous functionals x';: C( T) --+ K by x,; (x ) =
Qn(x), x E C(T), we obtain

m n

Ilx,;11 = L \c~I,
i~l

(3)

so that, in virtue of Theorem 1.1, we arrive at the following divergence
theorem for quadrature formulas:

1.3. THEOREM. If

(4)



then the set

DIVERGENCE OF SIMPLE QUADRATURES

s= {XE C(T): suP{IQn(x)l: nEN} = oo}
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is superdense in C( T); i.e., (1) is unboundedly divergent on S.

Given a sequence (C;)iEN of coefficients in K and a sequence (tiLEN of
distinct nodes in T, we consider the associated quadrature formula

XE C(T), (5)

where the corresponding sum Qn(x) in (2) is defined here by

m n

Qn(x) = L cix(tJ
i=1

(6)

We remark that the formulas (5), (6) have the form (1), (2) with C~=Ci

and t~ = t i, i E {l, ..., mn}, n E N. When mn= nand u(t) = t, the formula (5)
was first introduced by P. J. Davis [2] under the name of simple
quadrature formula. Davis proved the following divergence theorem for
simple quadrature formulas:

1.4. THEOREM [3, pp. 357-358]. If m n= nand u(t) = t, t E T, then the
quadrature formula (5) is divergent; in other words, there exists a function
X oE C(T) such that Rn(xo) ++0 as n ~ 00.

In this paper we show that Theorem 1.4 remains valid in the case of
simple quadrature formulas having the general form (5) (Theorem 2.1 ).
Moreover, we prove the unbounded divergence of (5) on superdense sub­
sets of C(T) (Theorem 3.1), which represents a new result even for the
Davis' simple quadrature formula. As an application of these results, we
derive the divergence and the unbounded divergence on superdense sets
simple quadrature formulas with a weight (Remark 2.3 and Theorem 3.2).

2. DIVERGENCE OF SIMPLE QUADRATURE FORMULAS

2.1. THEOREM. If the nodes ti' i EN, are distinct and u: T ~ K is a non­
constant continuous function ofbounded variation, then the simple quadrature
formula (5) is divergent.

Proof Assume the contrary, i.e.,

640/67/3-6

f x(t) du(t) = I cix(t;)
T i~1

for each x E C( T).
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Then Theorem 1.2 implies
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(7)

Let us remark that not all Ci in (5), (6) are zero. Indeed, since u is non­
constant, there exist p and q in T such that a ~ p < q ~ band u(p) # u(q).
Let a < p and q < b. For each positive e < min{p - a, b - q} we define the
l::ontinuous function X e : T ~ R by

1, if tE[p,q],

0, if tE [a, p-e] u [q+e, b],
xe(t) =

(t- p+e)je, if tE ]p-e, pL

(-t+q+e)/e, if t E ]q, q + eL

and observe that Ilxeli = 1 and

f xe(t)du(t)=f xe(t)du(t)+u(q)-u(p)
T p~e

f
q + e

+ xe(t) du(t).
q

(8)

The continuity of the variation function t H V~ (u) at the point t = q (see
[6, pp. 243-244]) implies

and

If
q + e I q+e

q xe(t) du(t) ~ Ilxell y (u) ~ 0 as

f xe(t) du(t) ~ 0
p-e

as e~O.

Now, if all C i would vanish, take in (8) a sufficiently small e> 0, make
n ~ 00 in the formula (5) written for x = x e , and arrive at a contradiction.

A similar argument applies when a = p or q = b.
Consequently, there must exist a k in N such that

0:: =! Ickl > O.

By (7) there is a j in N such that mj > k and

00

L Icil<o::.
i=mj+l

(9)

(10)
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Because the nodes t i are distinct, we have

j1=min{ltk - til: iE {l, ..., mJ\{k}} >0.

Suppose first that tk satisfies a < tk < b and denote

'Y = min {IX, j1, tk - a, b - td > O.
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Using again the continuity of the function t f--+ V~ (u) this time at the point
t = t b there exists a 0> 0 with 0 ~ 'Y such that

tk+b
V (u)~'Y.
tk~b

Now, define the continuous function Xb: T -+ R by

(11 )

{

(t-tk+O)/O,

Xb(t) = (- t + tk+ 0)/0,

0,

if tE ]tk-b, tkL

if tE[tbtk+O[,

otherwise.

(12)

Since I!xbll=l and Itk-til~o for all i in {1, ...,mJ\{k}, the relations
(11), (12), (5), (6), (9) and (10) lead to the contradiction

tk + b I tk + b I
IX ~ 'Y ~ Ilxbll . t:-b (u) ~ t~b xb(t) du(t)

= Itxb(t) dU(t)1 = ICkXb(tk)+ i~~+ 1 CiXb(tJI

co

~ Iek I - L Ie;I > 21X - IX = ()(.
i=mj+ 1

When tk = a or b we use a similar argument. This completes the proof of
our theorem. I

2.2. Remarks. (i) The continuity hypothesis of the function u is not
directly used in the proof of Theorem 2.1. We use only the apparently
weaker hypothesis concerning the continuity of the variation function
t f--+ V~ (u), t E T. In fact, the continuity of the last function at a point t in
T implies the continuity of the given function u at the same point since

lu(s) - u(t)1 ~!y (u) - y(U)!,

(See also [4, Corollary 1.1]).

S, t E T.
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(ii) As the next example shows, the continuity of the function u in
Theorem 2.1 cannot be dropped. Let (ti)iEN be any sequence of distinct
nodes in the open interval ]0,1[, (Ci)iEN be any sequence of positive num­
bers with L:: 1 Ci < 00, and u, v: R ~ R be two functions defined by v(t) = °
if t~O, v(t)= 1 if t>O, and u(t)=L::l civ(t-t;). (Note that u is discon­
tinuous at each point t i .) It can be shown that the corresponding simple
quadrature formula (5), (6) with mn = n is convergent on the space C[O, 1]
(see [8, p. 126]).

Let w: T ~ R be a weight function, i.e., a nonnegative Lebesgue
integrable function on T with

f w(t)dt>O.
T

(13 )

In the same manner as in Section 1 we define the notions of convergence
and unbounded divergence of the quadrature formula with the weight w,

where Qn(x) is given by (6).

XE C(T), (14)

2.3. REMARK. If the nodes t i, i EN, are distinct, then the simple
quadrature formula (14) with the weight w is divergent.

Proof As is well-known, the function u: T ~ R defined by

u(t) =rw(s) ds
a

is absolutely continuous; hence u has bounded variation on T, possesses
a finite derivative a.e. on T, and satisfies u'(t) = w(t) a.e. t E T (see
[6, pp. 271-274]). Therefore, the Riemann-Stieltjes integral JT x(t) du(t),
x E C(T), exists and is equal to the Lebesgue integral JT x(t) u'(t) dt (see
[6, pp. 251-252 and 290-291]). Hence

f w(t)x(t)dt=f x(t)u'(t)dt=f x(t)du(t).
T T T

By (13) the function u is nonconstant on T, so that the conclusion of
Remark 2.3 is a consequence of formulas (5) and (14), and of
Theorem 2.1. •
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3. SUPERDENSE UNBOUNDED DIVERGENCE OF

SIMPLE QUADRATURE FORMULAS
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3.1. THEOREM. Suppose that the hypotheses of Theorem 2.1 are satisfied.
Then (5) is unboundedly divergent at a point in C(T) if and only if
L:":l Icil = 00. Moreover, the last condition implies the unbounded divergence
of (5) on a superdense set in C(T).

Proof If (5) diverges unboundedly at a point x in C(T), i.e.,
sup{lx:(x)l: nEN} =suP{IQn(x)l: nEN} = 00, then, by (3) and Ix:(x)1 ~
Ilx:llllxll, we obtain L:":llc;l=sup{llx:ll:nEN}=oo. Conversely, if
L:":l Ic;1 = 00, then from Theorem 1.3 it follows that the set S= {XE C(T):
sup{IQn(x) I: n EN} = oo} is superdense in C( T). Since S # 0, there exist
points x at which (5) is unboundedly divergent. I

3.2. COROLLARY. Suppose that the hypotheses of Theorem 2.1 are
satisfied and that (5) converges on the set P in Theorem 1.2. Then (5)
diverges unboundedly on a superdense set in C(T).

Proof If (5) converges on P, then Theorems 1.2 and 2.1 imply
L:": 1 Icil = 00, so that Theorem 3.1 applies. I

A. I. Mitrea [5, Theorem 6.3] proved the unbounded divergence
on superdense sets in C( T) of quadrature formula (14) with mn = n,
T= [ -1, 1J, Qn having the general expression (2), and c~ having a
particular form, namely c~ are defined by the "interpolatory formulas"

c~ = f w(t) l~(t) dt,
T

where I ~ is the Lagrange interpolatory polynomial associated with
the distinct nodes t~, ..., t~. A result of this type for simple quadrature
formulas is contained in the following corollary:

3.3. COROLLARY. Suppose that the hypotheses in Remark 2.3 are
satisfied and that (14) converges on the set P in Theorem 1.2. Then (14)
diverges unboundedly on a superdense set in C( T).

Proof The argument is the same as in the proofs of Theorem 3.1 and
Corollary 3.2, and it is based on Remark 2.3 instead of Theorem 2.1. I
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